Categories
Remediation

Experts recommend leaving tailings in Quesnel Lake

Lately we have received questions about the water quality at Quesnel Lake, so here are a few Q&A’s which address this subject.

First, what it means to conduct remediation?

According to the BC Environmental Management Act, “remediation” means action to eliminate, limit, correct, counteract, mitigate or remove any contaminant or the adverse effects on the environment or human health of any contaminant.

At Mount Polley, using the results of the detailed site investigations, and the human health and ecological risk assessments, the goal of the mine’s environmental remediation work is to repair and rehabilitate the areas impacted by the tailings spill such that they are on a path to self-sustaining ecological processes that result in productive and connected habitats for aquatic and terrestrial species.

As the impacts of the spill were determined to be primarily physical and not chemical, this has meant that the focus of the work has been on repairing and rebuilding habitats. 

Where can I find data about the water quality in Quesnel Lake?

The BC government website hosts an interactive map of surface water monitoring sites in the Province which gives access to results of water sampling and analyses, including Quesnel Lake and other surface water sites around the area of the mine. 

Why was the decision made to leave the tailings at the bottom of Quesnel Lake?

Research and monitoring of the physical and chemical stability of the tailings on the bottom of Quesnel Lake indicate that they are not causing pollution and studies of the bottom-dwelling (benthic) organisms have shown that they are slowly recolonizing the lake bottom as native sediment slowly deposits on top of the organic-poor tailings, bringing organic matter to the lake floor. 

After completing a Net Environmental Benefit (NEB) assessment, experts recommended that the best approach for remediation of the tailings in Quesnel Lake was to leave them alone and cause no further disturbance.

The experts determined that any attempt to remove the tailings could significantly disrupt the present ecosystem and set back the progress that had already occurred.

Remediation at Mount Polley is all about creating the conditions for successful natural recovery, and not doing more damage.

Categories
Mining facts

Tailings – What are they and what is in the Mount Polley tailings?

First, what are tailings?

Tailings are essentially crushed rock, and are the leftover material after the minerals containing the “elements of interest” have been removed. At Mount Polley the elements of interest are copper, gold and silver. The minerals containing the copper, gold and silver are released by crushing and grinding the mined rock down to sand and silt sized particles.

At Mount Polley, a process known as flotation is then used to separate the important copper-bearing minerals from the rest of the crushed ground rock. The remaining crushed rock is considered waste (gangue) and is what makes up the tailings. No cyanide is used at Mount Polley.

Read more about Tailings on the Mining Association of BC’s website here.

What is the in the Mount Polley tailings?
At Mount Polley, the valuable elements are copper, gold and silver and they are found most commonly in the sulphide minerals, chalcopyrite and bornite. The leftover minerals found in the waste are piped as a slurry with water to the tailings storage facility. [ref: Community Updates 2017 Issue 3; 2016 Apr Issue 2]

The rocks that are mined at Mount Polley are around 200 million years old and represent ancient volcanic rocks and magma that intruded into these rocks. The intrusive rocks host the copper, gold and silver mineralization.

Let’s talk rocks!
The rocks which host most of the ore are made up primarily of the minerals orthoclase (potassium feldspar), albite (sodium plagioclase), magnetite (iron oxide), Ca-plagioclase (calcium plagioclase), diopside (pyroxene), garnet, biotite (mica), epidote and calcite (calcium carbonate). These minerals are all common rock-forming minerals, and represent 90% of what ends up in the Mount Polley tailings pond.

Of the other 10 percent, most are also common minerals, with a minor amount of sulphide minerals, including a little bit of chalcopyrite (0.17%) that didn’t get captured in the mill and a small amount of pyrite (0.04%).

What is unusual about Mount Polley is that, when compared to many other copper deposits (and the reason why these tailings are considered by geochemists to be chemically quite benign) there is very little pyrite (iron sulphide) and a fair amount of calcite (calcium carbonate) in the tailings.

Due to this, Mount Polley’s tailings do not generate “acid rock drainage”. This is the process that happens when sulphide minerals, especially pyrite, are exposed to the atmosphere and react to form sulphuric acid, which then can leach metals out of tailings and lead to metal mobility and potential contamination.

Mount Polley’s tailings do not have this “acid rock drainage” problem, as there is very little pyrite, and calcite acts as a neutralizing agent if any of the minor amounts of sulphide in the tailings breaks down. The vast majority of the rest of the minerals in Mount Polley’s tailings does not react easily with air or water, and are very similar to natural sand.